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Kármán-Howarth closure equation on the basis of a universal eddy viscosity
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This Rapid Communication presents a simple closure for the two-point correlation transport equation in
decaying isotropic turbulence. It relies essentially on an eddy viscosity νt which exhibits some remarkable
universal facets over an impressively wide range of scales. This allows us to model the third-order structure
functions in different decaying flows covering a large extent of Reynolds numbers. The model is numerically
time integrated to predict the decay of second-order structure functions and compared to experiments in grid
turbulence. Agreement between predictions and measurements is satisfactory.
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The Kármán-Howarth equation [1] can be written in terms
of velocity structure functions [2]

3∂t (�u)2 = 1

r4
∂r [r4(6ν∂r (�u)2 − (�u)3)] − 4ε. (1)

�u = u(x + r) − u(x) is the longitudinal velocity increment
between two points separated by a distance r and ∂α• =
∂•/∂α. Further, ε = 15ν(∂xu)2 is the mean dissipation rate
with ν the kinematic viscosity, and the overbar denotes
averaging. Second- and third-order structure functions (�u)2

and (�u)3 appearing in Eq. (1) are usually interpreted as the
kinetic energy and the kinetic energy transfer at a given scale,
respectively, two crucial quantities for modeling turbulent
flows.

In spectral space, the equivalent equation known as Lin’s
equation [3] reads

∂tE(k) = T (k) − 2νk2E(k), (2)

in which E(k) is the three-dimensional energy spectrum, k

is the wave number, and T (k) is the spectral energy transfer
function. Equation (2) describes essentially the same physical
mechanism as Eq. (1), i.e., the decay, the transfer, and the
dissipation of energy at a given scale or wave number.

In the last 50 years, several closures of Eq. (2) have
been developed and are still extensively employed. Among
others, we can cite the direct interaction approximation model
proposed by Kraichnan [4] or the eddy damped quasinormal
Markovian (EDQNM) closure [5].

On the contrary, closures of Eq. (1) have not received the
same attention. To our knowledge, Millionshchikov [6] (in
Russian), Domaradzki and Mellor [7], Effinger and Grossmann
[8], Oberlack and Peters [9], and Baev and Chernykh ( [10],
and references therein) are the only authors who proposed a
model (sometimes identical) for (�u)3. All of them are based
on the concept of an eddy viscosity νt , i.e., Eq. (1) is then
formally rewritten as

3∂t (�u)2 = 1

r4
∂r [r46(ν + νt )∂r (�u)2] − 4ε. (3)

The third-order structure function is thus related to νt and
(�u)2 through

(�u)3 = −6νt∂r (�u)2, (4)

where νt is a function of the separation r . Domaradzki and
Mellor [7] proposed an expression for νt on the basis of inertial

range asymptotic relations (Rλ → ∞, where Rλ =
√

u2λ/ν is
the Reynolds number based on the Taylor microscale λ ≡√

15νu2/ε). However, as mentioned by the authors, the latter

expression was not consistent with the scaling (�u)3 ∝ r3

as r goes to zero. This constraint led Oberlack and Peters
[9] to handle another expression for νt , consistent with both
dissipative and inertial range scaling laws. Here again, νt was
parametrized through a constant (called κ0 in their paper),
the value of which relies on asymptotic inertial laws. Even
though the use of asymptotic relations may be questionable in
the context of finite Reynolds number flows (for instance, see
[11], and references therein), both models were in satisfactory
agreement with the third-order correlation functions measured
by Stewart and Townsend [12] at (very) low Reynolds numbers
(Rλ < 60).

This intriguing feature indicates that the assumption of
infinite Reynolds numbers is not a necessary condition for
asymptotic expressions of νt to be employed. Therefore, there
is matter for investigating the approach towards the asymptote
and the universal properties, i.e., the flow and Rλ dependence,
of the turbulent eddy viscosity, with the goal of providing an
efficient simple closure scheme in physical space.

The results presented in this Rapid Communication high-
light that the Kolmogorov normalized eddy viscosity reveals
a remarkable degree of universality over a wide range of
scales. An analytical expression for νt is provided revealing
the existence of two universal parameters: the skewness of
velocity derivative S and a new scale of turbulence called
rc. In the inertial range and beyond, νt closely follows the
asymptotic scaling even though neither (�u)2 nor (�u)3

indicate any unambiguous scaling. We then take advantage
of these properties to model the third-order structure functions
in different decaying flows, for Reynolds numbers Rλ lying
between 50 and 1100. Finally, the model is numerically
time integrated to predict the decay of second-order structure
functions and compared to experiments in grid turbulence
(Rλ ≈ 50) for downstream distances up to 80M (M is the
grid mesh size).

In order to derive an analytical expression for νt , we first
recall that at small scales, (�u)2 = εr2/15ν and (�u)3 =
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−S(εr2/15ν)3/2. S = −(∂xu)3/[(∂xu)2]3/2 is the skewness
of the longitudinal velocity derivative with respect to the
longitudinal direction x. It follows that in the dissipative range

νt

ν
= S

12
√

15
r∗2

. (5)

Hereafter, the asterisk denotes normalization by the Kol-
mogorov scales, i.e., r∗ = r/η with η = (ν3/ε)1/4. Second,
in the context of infinite Reynolds numbers and for scales
in the range η 	 r 	 L (L is the integral length scale),
(�u)2 = Cu(εr)2/3 and (�u)3 = −Auεr (Cu = 2, Au = 4/5
[13]). Hence, in the inertial range

νt

ν
= 1

5Cu

r∗4/3
. (6)

Equation (6) was already proposed by Domaradzki and Mellor
[7], even though we became aware of this after we derived it.
Following, e.g., [14], we match Eqs. (5) and (6) into a single
expression

νt

ν
= Sr∗2

12
√

15[1 + γ r∗2]1/3
. (7)

Equation (7) generalizes the expression of [7] by covering
both dissipative and inertial ranges. In Eq. (7), the crossover
length scale between dissipative and inertial range r2

c =
1/γ is determined by equating Eqs. (5) and (6), yielding
r∗
c = (12

√
15/5CuS)3/2. As for the EDQNM spectral closure,

dissipative and inertial range intermittency effects are not
taken into account in the present analysis. According to the
Kolmogorov theory [13], S, Cu, and consequently r∗

c are
universal. However, in the context of finite Reynolds number
flows, S and r∗

c are (a priori) two free parameters. In the
following, we turn our attention to their evolution with respect
to the Reynolds number.

The analytical expression for νt [Eq. (7)] is thus compared
to the one inferred from experiments in grid, wake, round, and
plane jet turbulence. The Reynolds number is in the range 50 �
Rλ � 1100. The grid turbulence experiments are described
in [15]. The wake flow facility is described in [15], while
experiments in the round and plane jets are outlined in [15]. For
the wake, round, and plane jet experiments, the measurements
were made at the centerline, thus avoiding to account for any
additive production terms in Eq. (1) due to the mean shear.

The dependence on Reynolds number of the measured eddy
viscosity is presented in Fig. 1(a). At small scales (r∗ � 10), all
experimental points converge onto a single curve which is well
represented by Eq. (5) with S = 0.424 [Fig. 1(a)]. The value
of S used here is the mean value between the five experiments.
S varies by only 5% from one experiment to another. This
indicates that the skewness of the velocity derivative S remains
constant in agreement with the Kolmogorov theory [13]. For
the range of Reynolds numbers investigated, the effect of
internal intermittency on S [16] is not discernible. Both the
constancy and the value itself of S are quite consistent with
all experimental values compiled by [17], at least for the same
range of Reynolds numbers. Further, it is in perfect agreement
with EDQNM [16].

As we progress through to the larger scales (10 � r∗ �
102), even though second- (not shown) and third-order
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FIG. 1. (a) νt/ν as a function of r∗ measured in different flows
(50 � Rλ � 1100). Equation (7) (dashed line); Eq. (7) with r∗

c =
25 (solid line). The inset depicts the compensated eddy viscosity
(νt/ν)/r∗4/3. (b) Kolmogorov-normalized third-order structure func-
tions. Symbols are the same as in Fig. 1(a); solid lines represent the
present model using r∗

c = 25.

structure functions [Fig. 1(b)] become Rλ dependent, the eddy
viscosity νt follows the same evolution independently of the
Reynolds number. In other words, the Kolmogorov normalized
eddy viscosity collapses over a wider range of separations in
comparison to (�u∗)2 and (�u∗)3.

Then, for separations r∗ � 102, the effect of Reynolds
number becomes discernible and the r∗4/3 scaling range
extends as the Reynolds number increases. Note that the
separation beyond which the measured eddy viscosity differs
from the prediction of Eq. (7) in Fig. 1(a) corresponds to
the scale beyond which (�u)3∗/r∗ is almost zero in Fig. 1(b).
Therefore, νt remains universal in the range of separations over
which the third-order structure function has to be modeled.
We further observe that, though very close to the asymptotic
relation, Eq. (7), a constant value of r∗

c = 25.0 (instead of 36.3
providing Cu = 2) is more suitable to parametrize νt over the
whole range of Reynolds numbers. This supports a universal
value for r∗

c , although weaker than the expected (Kolmogorov)
value. This is in agreement with the observations of [7]
revealing that the prefactor in Eq. (6) varies by only a few
percent in the range 50 � Rλ � 104 and remains always
smaller than the expected asymptotic value even at a very
high Reynolds number.
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Finally, the last observation that one can make is that at the
highest Reynolds number (Rλ = 1100), the scaling νt ∝ r∗4/3

is accurately satisfied over almost two decades of separations
(102 � r∗ � 104) while there is no unambiguous scaling range
for either (�u)2 (not shown) or (�u)3 [Fig. 1(b)]. The scaling
range of νt does not appear to be sensitive to any intermittency
effect and is also much more extended than that of second-
and third-order structure functions.

At this stage, we can draw the overall conclusion that,
at least over the range of Reynolds numbers investigated
here, S and r∗

c can be reasonably considered as universal.
The constancy of S relies on the validity of the Kolmogorov
normalization in the dissipative range, which holds even at low
Reynolds numbers [18]. In contrast, the constancy of r∗

c is quite
intriguing since it is now well known that the Kolmogorov
“constant” Cu and the scaling exponent of (�u)2 are sensitive
to the Reynolds number variations (at least for Rλ < 104 [11]).
To a large extent, the observed universality of r∗

c is thus most
likely due to some compensating effects that occur between Cu,
Au, and the scaling exponent of both (�u)2 and (�u)3 involved
in Eq. (6). The consequence is that r∗

c remains constant with
respect to the Reynolds number.

The universality of νt can be further justified recalling
that νt (r) ∝ r2/τ (r) [see Eq. (19) in [19]], in which the
characteristic time scale τ (r) is representative of the cascade
mechanism. In spectral space, one possible expression for τ (k)
is that of Batchelor and Kraichnan [20] that was recently
invoked by [21] as a closure for the passive scalar spectral
equation. In [20], τ (k) was interpreted as the time scale of the
strain at a given wave number due to all larger scales. Using
Kolmogorov scaling, τ (k) can be expressed as

τ ∗(k∗) ∝
[∫ k∗

0
p∗2

E∗(p∗)dp∗
]−1/2

, (8)

where p is a dummy integration variable. In Eq. (8), the
normalized spectrum is multiplied by p∗2 so that the contri-
bution to the integral of the largest scales (low wave numbers)
is weak. On the contrary, contributions from the smallest
scales are magnified and the range of scales over which the
Kolmogorov scaling is observed is extended [18]. In other
words, the integrand p∗2E∗(p∗) in Eq. (8) always satisfies
Kolmogorov scaling over a larger range of scales compared to
E∗(p∗) [18]. Therefore, since νt is intimately related to τ via
νt (r) ∝ r2/τ (r), the same conclusions can be drawn for the
eddy viscosity.

The idea of invoking a set of scales which yields a
collapse of velocity statistics over a wider range of scales
was already used in [22] for which the relevant scales are λ

and q2 = uiui (twice the total kinetic energy). Further, in the
energy-containing and inertial ranges, [23] demonstrated that

the use of u2 and the von Kármán length scale (≡ u2
3/2

/ε)
leads to a satisfactory collapse of energy spectra. As far as
the eddy viscosity is concerned, it appears that the relevant
normalization is given by the Kolmogorov scales.

We now take advantage of this extended universality
to develop a simple closure equation for Eq. (1). Third-
order structure functions are thus calculated from measured
second-order structure functions using Eqs. (4) and (7). The

comparison between modeled and measured third-order struc-
ture functions is shown in Fig. 1(b).

Since Eq. (7) accurately represents the measured eddy
viscosity, it is not surprising to observe that modeled and
measured third-order structure functions are in excellent
agreement [Fig. 1(b)]. The shape and evolution of (�u)3∗/r∗
with respect to the Reynolds number are very well reproduced.
The minor differences that may be observed are rather due to
some slight errors in evaluating the derivative of measured
second-order structure functions.

A much more stringent test of the validity of the present
closure is the following. Starting with an initial condition at a
particular position in the flow, can we reliably predict the decay
of second-order structure functions downstream? To this end,
Eq. (3) has to be time integrated.

Since theory is compared to a spatially decaying turbulence
(in this case grid turbulence [15]), we relate the final time of
integration to the downstream distance by means of Taylor’s
hypothesis, i.e., x ≡ Ut (U is the mean flow velocity). The
time integration of Eq. (3) is handled using a fourth-order
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FIG. 2. (a) Comparison between measured and predicted second-
order structure functions in grid turbulence (Rλ ≈ 50). The time inte-
gration is started at x = 20M . (b) Evolution of u2/U 2, εM/U 3(102),
λ/M(10−2), η/M , and Rλ(10−3) with x/M . U = 6.4 m s−1 is the
mean flow velocity. Symbols represent measured values, while solid
lines are the predicted values. The mean dissipation rate ε is estimated
from the relation ε = 15ν(∂xu)2 (�) and from Eq. (9) (�). The
measured Taylor and Kolmogorov length scales were inferred from ε

computed from Eq. (9).
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Runge-Kutta algorithm. Derivatives ∂r• are approximated by
a central second-order finite difference scheme. Boundary
conditions are set as (�u)2(r = 0) = 0 and ∂r (�u)2(r →
∞) = 0.

Results are given in Fig. 2(a). The initial conditions are
set at x = 20M behind the grid (M = 24.76 mm is the grid
mesh size) and predictions are compared with measurements
at x = 40, 60, and 80M . The initial Reynolds number Rλ is
about 50 and decreases slightly with x.

Measured and predicted second-order structure functions
are in good agreement [Fig. 2(a)]. Minor differences can be
observed at large separations where the model very slightly
overestimates (�u)2. From the decay of second-order structure
functions, one can obtain the evolution of one-point statistics,
i.e., the longitudinal velocity variance 2u2 = (�u)2(r → ∞),
the mean dissipation rate ε = 15ν limr→0 (�u)2/r2, the Tay-
lor and Kolmogorov length scales (λ and η), and the Reynolds
number Rλ. The mean dissipation rate can also be evaluated
though the one-point energy budget

ε = − 1
2∂tq2, (9)

where q2 = u2 + v2 + w2 is twice the total kinetic energy.
The evolution of one-point statistics is depicted in Fig. 2(b).
The variation with respect to the downstream distance of
all these quantities is globally very well reproduced by the
present model. One can further note that the magnitude of the
measured mean dissipation rate inferred from ε = 15ν(∂xu)2

is smaller (≈15%) than that predicted by the model. This
discrepancy may be due to the smallest scales not being

sufficiently resolved by the hot wire measurements. Indeed,
values of ε using Eq. (9) are only ≈10% smaller than those
predicted.

The idea of predicting the decay of one-point statistics from
a two-point closure equation was also tackled by Lohse [8],
with a closure scheme based on the variable range mean field
theory. In the latter study, the prediction of basic quantities,
such as the normalized energy dissipation and enstrophy
decay rates, compared favorably with experimental results in
a particular type of decaying flow where the integral length
scale does not vary with time. Obviously, this type of analytical
treatment cannot be applied to decaying grid turbulence where
the integral length scale grows continuously with time (or
distance from the grid).

In summary, the universal facets of the eddy viscosity for
the closure of the Kármán-Howarth equation are examined in
detail. It is highlighted that νt remains impressively universal
over a remarkable range of scales. An analytical expression
for νt is further proposed, based on the observed constancy
of the skewness of velocity derivatives and highlights the
existence of a new scale of turbulence called rc. The model
is in good agreement with measurements in different types
of decaying flows, over a wide range of Reynolds numbers.
The closure scheme is finally time integrated and reproduces
measured second-order structure functions in grid turbulence
quite favorably.
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